

Effective from Session: 2023	Effective from Session: 2023-24										
Course Code	B100301T/ BS207	Title of the Course	Molecular Biology	L	т	Р	с				
Year	П	Semester	III	3	1	0	4				
Pre-Reguisite	10+2	Co-requisite									
Ple-Requisite	Biology	co-requisite									
Course Objectives	The objective of this course is to enable students to understand the concept of different types of genes, DNA replication,										
course objectives	Transcription,	Translation, regulation of G	Gene expression in prokaryotes and eukaryotes.								

	Course Outcomes
CO1	The students will be able to explain the basic concept of genome organization.
CO2	The students will be able to explain the process of DNA replication and its regulation in prokaryotes and eukaryotes
CO3	The students will be able to explain the process of transcription in prokaryotes and eukaryotes and post transcriptional modifications
CO4	The students will be able to describe the basics of translation in prokaryotes and eukaryotes and post translational modification
CO5	The students will be able to discuss regulation in gene expression and DNA repair systems.

1 2 3 4 ·	Basic Concepts of genome and its organization DNA Replication	Importance of Molecular Biology, Nucleic acid as the genetic material, Central Dogma of Molecular Biology, Model organisms for studying Molecular Biology, Genome and its organization in prokaryotes and Eukaryotes: Gene, Genome, Exon, Intron, regulatory sequence, Nucleosome structure and packaging of DNA into higher order structures. Semiconservative mode of replication. Mechanism of Replication in prokaryotes and eukaryotes. Enzymes and proteins involved in replication, Theta model and Rolling circle model, Inhibitors of	8	C01				
3	DNA Replication							
4		Replication.	8	CO2				
	DNA Damage, Repair and Mutation	Causes and types of DNA damage, Mechanism of DNA repair, Molecular basis and types of mutation. Ames test.	6	CO3				
5	TranscriptionTranscription process in prokaryotes and eukaryotes. Enzymes, promoter, and transcription factors. Inhibitors of transcription Actinomycin D and α- Amanitin.							
5	Translation Components of Protein synthesis machinery: Messenger RNA, tRNA structure and function, Charging of tRNA, aminoacyl tRNA synthetases, ribosome structure and assembly, Mechanism of protein synthesis in prokaryotes and Eukaryotes.							
6	Post-Transcription and Post-Translation Modifications	Post-transcriptional modifications of eukaryotic mRNA (capping, polyadenylation and splicing, post- translational modifications of proteins.	8	CO5				
7	Gene expression	Principles of gene regulation, negative and positive regulation, concept of operons, Regulation of gene expression in prokaryotes and eukaryotes; Lac operon and Trp operon concept	8	CO5				
8	Classes of DNA sequences	Satellite DNA, Split genes, Pseudogenes, Transposable elements, Retroelements, LINEs, SINEs.	6	CO5				
Reference	Books:							
1. Lewin B	B. (2000). Genes VII. Oxfo	ord University press.						
2. Watsor	on JD, Hopkins NH, Robert	s JW, Steitz JA, Weiner AM. (1987). Molecular biology of the gene.						
3. Lodish	n H, Baltimore D, Berk A, Z	ipursky SL, Darnell J. (1995). Molecular cell biology.						
4. Brown,	n, TA Genomes (2020).							
1. Lewin E	B. (2000). Genes VII. Oxfo	ord University press.						
e-Learnin								

PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
со	101	102	105	104	105	100	107	1301	1302	1 303	1304
CO1	3	1					1	2	2	1	
CO2	3	1					1	3	2	2	
CO3	3	1					1	3	2	3	
CO4	3	1					1	3	2	3	
CO5	3	1					1	3	2	3	
			1- Low Co	orrelation;	2- Modera	ate Correla	tion; 3- Su	bstantial Corre	lation		

Name & Sign of Program Coordinator Sign & Seal of HoD

Effective from Session: 2023	Effective from Session: 2023-24											
Course Code	B100303T/	Title of the Course	Basics of Microbiology		т	D	C					
Course Code	BS208	The of the course	Basics of Microbiology	L		P						
Year	П	Semester	III	3	1	0	4					
Pre-Requisite	10+2	Co-requisite										
Course Objectives	The objective	e of this course is to dev	velop an understanding of basics of microbiology and steri	lizatio	n techn	iques						

	Course Outcomes
CO1	To understand basic details of basics and history of microbiology and general classification of microbes and extremophiles
CO2	To understand basic details of microbes in extreme environments and microbial interactions
CO3	To understand basic details of control of Microorganisms and staining techniques
CO4	To understand basic details of growth of microbes and recombination in Prokaryotes
CO5	To understand basic details of bacteriophages

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	History of microbiology	Definition and scope of microbiology, Importance of microbiology in various fields, History of microbiology: Spontaneous generation and its controversy, Louis Pasteur and the refutation of spontaneous generation, Germ theory of disease, Robert Koch and the postulates of bacterial pathogenesis	8	CO1
2	Classification of microbes	Introduction to Microbial Classification, Prokaryotic, and eukaryotic microbes, Classification Methods and Techniques: Phenotypic, genotypic and serological methods, Microbial Taxonomy and Nomenclature; Nature of the microbial cell surface, gram positive and gram negative bacteria	8	CO1
3	Microbes in extreme environments and microbial interactions	Microbes in extreme environments and microbial interactions: The thermophiles: alkalophiles, acidophiles and symbiosis and antibiosis among microbial population, N_2 fixing microbes in agriculture and forestry.	8	CO2
4	Control of Microorganisms	Control of Microorganisms: Physical agents (Autoclave, Hot air oven, Laminar airflow and membrane filter.), chemical agents (Alcohol, Halogens and Gaseous agents, antibiotics), Radiation Methods (UV rays).	8	CO3
5	Stains and staining techniques	Introduction to Stains and Staining Techniques, Principles of staining, Types of stains – simple stains, structural stains, and Differential stains, Application of Staining Techniques in Microbial Diagnostics	6	CO3
6	Recombination in Prokaryotes	Recombination in Prokaryotes: Transformation, Conjugation and Transduction	8	CO4
7	Growth of microbes	Introduction to Microbial Growth, Microbial Growth Curve, Factors Influencing Microbial Growth	6	CO4
8	Viruses/Bacteriophage	Introduction to Bacteriophages, Bacteriophage Structure and genetics, Bacteriophage Life Cycle: Lytic and lysogenic cycle, General characteristics of plant and animal viruses	8	CO5
Referenc	e Books:			
	uction to Microbiology, Ing			
2. Brock I	Biology of Microorganisms,	Madigan et al, 9th ed.		

3. General Microbiology, R.Y. Stanier, J.L. Ingraham, M.L. Wheelis and P.R. Painter, Macmillian

4. Microbiology VI Edition, M.J. Pelczar, E.C.S. Chan and N.R. Kreig, Tata McGraw Hill

5. Principles of Microbiology, R.M. Atlas, Wm C. Brown Publisher.

6. The Microbial World, Roger Y. Stanier, Prentice Hall

7. Howe.C. (1995) Gene Cloning and manipulation, Cambridge University Press, USA

8. Lewin, B., Gene VI New York, Oxford University Press.

e-Learning Source:

https://www.khanacademy.org/

			_		C	ourse Arti	culation Matrix: (Map	ping of COs with POs	and PSOs)		
PO- PSO	PO1	000	PO3	PO4	DOF	DOG	007	DC 01	DCO2	PSO3	PSO4
CO	101	PO2	PU3	P04	PO5	PO6	PO7	PSO1	PSO2	P303	P304
CO1	3	1					1	3		1	2
CO2	3	1					1	3		2	2
CO3	3	1					1	3		3	2
CO4	3	1					1	3		3	2
CO5	3	1					1	3		3	2
			1	Louis Com	lation 2	Andorato (orrolation 2 Substa	atial Correlation			

Effective from Session: 2023-24											
Course Code	B190302P /BS209	Title of the Course	Molecular Biology Lab	L	т	Р	с				
Year	П	Semester	III	0	0	4	2				
Pre-Requisite	10+2	Co-requisite									
Course Objectives	The course i	The course is designed to train the students in basic and some advanced techniques of Molecular biology.									

	Course Outcomes
CO1	The students will be able to isolate genomic DNA from bacteria.
CO2	The students will be able to isolate genomic DNA from plant or animal tissues.
CO3	The students will be able to isolate plasmid DNA (<i>E. coli</i>).
CO4	The students will be able to perform restriction digestion of DNA.
CO5	The students will be able to perform Agarose Gel Electrophoresis.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Exp-01	Isolation of genomic DNA from bacteria (E. coli)	4	CO1
2	Exp-02	Isolation of genomic DNA from plant tissue	6	CO2
3	Exp-03	Isolation of genomic DNA from animal tissue	6	CO2
4	Exp-04	Isolation of plasmid DNA (E. coli)	4	CO3
5	Exp-05	Restriction digestion of DNA	2	CO4
6	Exp-06	Agarose Gel Electrophoresis	2	CO5

Reference Books:

1. Gene Cloning and DNA Analysis: An Introduction, 6th Edition by T. A. Brown

2. Sambrook J, Russell D (2001) Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

e-Learning Source:

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4			
со		102	105	101	105		107	1501	1302		1301			
CO1	3	1						3		3				
CO2	3	1		3		3	1	3	2	3				
CO3	3	1		3		3	1	1		3				
CO4	3	1		3		3	1				3			
CO5	3	1		3	3	3	1				3			

Name & Sign of Program Coordinator	Sign & Seal of HOD

Effective from Session: 2023-24									
Course Code	B100304P/ BS210	Title of the Course	Microbiology Lab	L	т	Р	с		
Year	II	Semester		0	0	4	2		
Pre-Requisite	10+2	Co-requisite							
Course Objectives	microbes, Stai sterilization of	ining Techniques, Enzyme f glassware, Media prepa	op the understanding of basic microbiology, Instruments used e assay and Biochemical tests–starch hydrolysis, gelatin liquefa ration and Isolation of bacteria and fungi from various sources estimation of DNA and RNA	iction,	Cleanin	g and	n		

	Course Outcomes							
CO1	Develop an understanding of Instruments: Compound microscope, Autoclave, Hot air oven, pH meter, Laminar airflow and centrifuge.							
CO2	Develop an understanding staining techniques							
CO3	Understand processes involved in culturing of microbes as cleaning and sterilization of glassware, media preparation.							
CO4	Understand the process of isolation of bacteria and fungi from soil/ air/water/ other sources							
CO5	Understand the growth pattern of bacteria.							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO						
1	Exp 1	Study of instruments: Compound microscope, Autoclave, Hot air oven, pH meter, Laminar airflow and centrifuge	8	CO1						
2	Exp 2	Cleaning and sterilization of glassware	4	CO3						
3	Exp 3	Media preparation: Nutrients agar, Nutrient broth and LB.	4	CO3						
4	Exp 4	Isolation of bacteria and fungi from soil/ air/water – dilution and pour plate methods	8	CO4						
5	Exp 5	Staining Techniques: Gram staining for gram positive and gram negative bacteria	8	CO2						
6	Exp 6	Growth curve of bacteria	8	CO5						
Referen	ce Books:									
Keith \	Wilson John Walker Johr	n M. Walker "Principles and Techniques of Practical Biochemistry"								
Williar	n M., Ph.D. O'Leary Rob	ert Dony Wu "Practical Handbook of Microbiology"								
Joseph	n Sambrook David W. Ru	ssel Joe Sambrook "Molecular Cloning: A Laboratory Manual"								
e-Lear	ning Source:									

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4		
со	101	102	105	104	105	100	107	1301	1302	1303	1304		
CO1	3	1		3		3	1	3	2	3			
CO2	3	1		3		3	1	1		3			
CO3	3	1		3		3	1				3		
CO4	3	1		3	3	3	1				3		
CO5	3	1		2		2	1				2		

Name & Sign of Program Coordinator	Sign & Seal of HOD

Effective from Session: 2023-24									
Course Code	B100303V/	Title of the	Malagular Diagnastica		Ŧ	D			
	BS247	Course	Molecular Diagnostics		1	P			
Year	П	Semester	Ш	3	0	0	3		
Pre-Requisite	10+2	Co-requisite							
Course Objectives	The objective of this course is to develop an understanding of the basic principle and application of								
	molecular te	molecular techniques employed in diagnosis of diseases.							

	Course Outcomes
CO1	To gain the basic knowledge about mechanism and pathogenesis of common diseases.
CO2	To understand basic details of pathogenesis and diagnosis of infectious diseases caused by bacteria, fungi, virus, and protozoa.
CO3	To understand basic details of basic principle & application of classical genotyping techniques.
CO4	To understand basic details of types of cancers, genetics and types of cancer and applications of Molecular Diagnostics for Human Cancers.
CO5	To understand basic details of principle and application of Molecular diagnostics techniques such as PCR, Real- Time PCR, DNA
	Sequencing, Microarray etc.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Human Genome & common diseases	Introduction and mechanism related to the human genome, such as gene expression, replication and genome maintenance. Consequences of mutations and polymorphisms, and impacts of genes and environment on major common diseases, such as cancer, diabetes, vascular and coronary disease	10	C01
2	Infectious Diseases and History of Diagnostics	Types of infectious diseases- bacterial, viral, fungal, protozoans and other parasites. Infection mode of transmission in infections, factors predisposing to microbial pathogenicity. Diagnosis of infectious diseases caused by bacteria, fungi, viruses, protozoa and Helminthes.	10	CO2
3	Major Genetic disorders, its causes & Diagnosis.	Genetic disorders; Sickle cell anaemia, Duchene muscular Dystrophy, Retinoblastoma, Cystic Fibrosis and Sex – linked inherited disorders	10	CO3
4	Cancer Biology and Diagnostics	Different types of cancers, genetics of cancer- oncogenes, tumour suppressor genes, Applications of Molecular Diagnostics for Human Cancers.	8	CO4
5	Molecular Diagnostics Tools	RT- PCR, Animal cell culture, DNA Sequencing, Microarray, Techniques of Nucleic acid Extraction, Real time PCR, Fluorescence In Situ Hybridization.	7	CO5
Reference	e Books:			
		Patrick R. Murray, Ken S. Rosenthal, Michael A. Pfaller		
	87 T	eenwood, Richard C. B. Slack, Michael R. Barer, Will L. Irving Jenni Punt, Sharon Stranford		
		Disorders of the Immune System" by Abul K. Abbas, Andrew H. Lichtman		
Dasic III	indiology. I difetions and t	Disorders of the minimule system by Abdi K. Abbas, Andrew H. Elchtman		
e-Learn	ning Source:			

Vlab.amrita.edu

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-														
PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4			
со														
CO1	3	1	1				1	3		1	3			
CO2	3	1					1	2		2	3			
CO3	3	1		3			1	3		3	2			
CO4	3	1					1	2		3	2			
CO5	3	1					1	3		3	2			
			1-	- Low Corre	elation: 2- N	Moderate (Correlation: 3- Substa	ntial Correlation						

Low Correlation: 2- Moderate Correlation: 3- 9 orre on

Name & Sign of Program Coordinator	Sign & Seal of HOD

Effective	from Session: 2023	3-24							
Course Code		B100401T/ BS218	Title of the Course Industrial Biotech and Bioprocess Technology		L	т	Р	с	
Year		П	Semester	IV	3	1	0	4	
Pre-Requisite		10+2 Biology	Co-requisite						
Course Objectives After completion of the course, a student will be able to develop the understanding of industrial aspects of biotechnology, IPR and b						R and bio	ethics		
	Course Outcomes: After this course students will be able to								
CO1	To understand the	e problems in iso	ation, strain improvement	in industrial processes.					
CO2	To understand the	e growth of micro	organisms in industrial pro	cesses.					
CO3	To understand de	sign and types of	fermenters and operation	of fermenters.					
CO4	To understand the	e production prod	cess of alcohols, antibiotic a	and enzymes and other biologically active compounds by industrial m	nicrobic	logical			
	fermentation								
COL	To understand the	- regulation of hi	a athies and nalisias of IDD a	and ontropropourship					

CO5 To understand the regulation of bioethics and policies of IPR and entrepreneurship.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction	Introduction of Industrial microbiology and Bioprocess technology. History-Introduction, scope and relation with other sciences. Screening for new metabolites: primary and secondary products. Maintenance of strains. Strain development through selection, mutations and recombination, and other recent methods	8	C01
2	Fermentation technology	Fermentation media, Natural and synthetic media, Sterilization techniques: Heat, Radiation and Filtration method. Types of fermentation: solid state, submerged fermentation and continuous fermentation, Types of microbial culture and its growth kinetics– Batch, Fedbatch and Continuous culture.	8	CO2
3	Bioprocess technology	Design and working of a typical bioreactor, Process of Aeration, Agitation, and Temperature regulation, Immobilized enzymes and cell bioreactors. Downstream processing (DSP), Disintegration of cells, Separation, Extraction, Concentration and purification of products.	8	CO3
4	Production of alcohols, antibiotic and enzymes:	Brief account of the following products obtained by industrial microbiological fermentation: alcohols (Ethanol) and Alcoholic Beverage: (Beer), Organic acid: (citric and acetic). Amino acids: (Glutamic acid), Vitamin: (vitamin B12).	8	CO3
5	Production of biologically active compounds:	Production of antibiotics (penicillin) and enzymes (amylase, protease). Production of microbial food and single cell proteins	8	CO4
6	IPR	Introduction to Intellectual Property Rights (IPR)-World Intellectual properties, Indian Intellectual Properties. Patents, Copyrights, Designs, Trademarks, Geographical Indication. Infringement of IPR, Its protection and Remedies. Licensing and its types.	7	CO5
7	Issues related to IPR	Issues related to IPR protection of software and database; IPR protection of life forms; patenting biological products and biodiversity; Major changes in Indian patent system as post TRIPS effects	6	CO5
8	Bioethics and GMP	Introduction, necessity and limitation; Different paradigms of bioethics: National and International; Ethical conflicts in Biotechnology; Bioethics of genes, Legal implications in bioethics. Introduction to GMP	7	CO5

Reference Books:

1. Glazier AN and Nikaido H (2007). Microbial Biotechnology – Fundamental & Applied Microbiology – Second Edition. Cambridge University Press.

2. Casida LE (2019) Industrial Microbiology. Second Edition, New Age International Publisher.

3. Stanbury P F and Whitaker, A. (2010). Principles of Fermentation Technology. Oxford: Pergamon Press

4. Shuler M L and Kargi F. (2002). Bioprocess Engineering: Basic Concepts. Upper Saddle River, NJ: Prentice Hall.

5. Crueger W and Crueger A (2002) Cruegers Biotechnology: A Textbook of Industrial Microbiology. Third Edition, Panima Publishing Corp., New Delhi.

6. Blanch H W and Clark D S. (1997). Biochemical Engineering. New York: M.Dekker.

7. Bailey J E and Ollis D F. (1986). Biochemical Engineering Fundamentals. New York: McGraw-Hill.

e-Learning Source:

https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-34-waste-containmentand-remediation-technology-spring-2004/lecture-notes/

https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-018j-ecology-i-theearth-system-fall-2009/

https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-018j-ecology-i-theearth-system-fall-2009/lecture-notes/MIT1_018JF09_Lec07.pdf https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-89-environmentalmicrobiology-fall-2004/

CO 3 1 1 3 2 3 CO2 3 1 1 3 2 2 CO3 3 1 1 3 2 3	PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO2 3 1 1 3 2 2 CO3 3 1 1 3 2 3	со	POI	P02	P05	P04	P05	PUO	P07	P301	P302	P305	P304
CO3 3 1 1 3 2 3	CO1	3	1					1	3	2	3	
	CO2	3	1					1	3	2	2	
	CO3	3	1					1	3	2	3	
CO4 3 1 1 1 3 2 3	CO4	3	1					1	3	2	3	
CO5 3 1 1 3 2 3	CO5	3	1					1	3	2	3	

Effective from Session: 2023	Effective from Session: 2023-24									
Course Code	B100402P/ BS210	Immunological Techniques Lab	Industrial Biotechnology Lab	L	т	Ρ	с			
Year	II	Semester	IV	0	0	4	2			
Pre-Requisite	10+2	Co-requisite								
	Biology	co-requisite								
Course Objectives	The objective	ne objective of this course is to enable students learn about basics of industrial biotechnology and fermentation								

	Course Outcomes
CO1	Understand method of isolation of industrially important microorganisms.
CO2	Perform Algal or fungal culture
CO3	Perform estimation of citric acid from Aspergillus culture.
CO4	Perform estimation of lactic acid.
CO5	Understand the working of small scale fermenter

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	Exp. 1	Isolation of industrially important microorganisms from soil.	8	CO1					
2	Exp. 2	Algal or fungal culture (Yeast and Aspergillus)	8	CO2					
3	Exp. 3 Estimation of citric acid from Aspergillus culture.		8	CO3					
4	Exp. 4	Estimation of lactic acid.	8	CO4					
5	Exp. 5	Demo of working of small scale fermenter	8	CO5					
Refere	Reference Books:								

1. Glazier AN and Nikaido H (2007). Microbial Biotechnology – Fundamental & Applied Microbiology – Second Edition. Cambridge University Press.

2. Casida LE (2019) Industrial Microbiology. Second Edition, New Age International Publisher.

3. Stanbury P F and Whitaker, A. (2010). Principles of Fermentation Technology. Oxford: Pergamon Press

4. Crueger W and Crueger A (2002) Crueger's Biotechnology: A Textbook of Industrial Microbiology. Third Edition, Panima Publishing Corp., New Delhi.

5. Blanch H W and Clark D S. (1997). Biochemical Engineering. New York: M. Dekker.

e-Learning Source:

PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO1	3	1		3			3	3	2		3
CO2	3	1		3			3	3	2		3
CO3	3	1		3			3	3	2		3
CO4	3	1					3	3	2		3
CO5	3	1					3	3	2		3

Name & Sign of Program Coordinator	Sign & Seal of HOD

Effective from Session: 2023-24	Effective from Session: 2023-24											
Course Code	B100403T/B S256	Title of the Course	Infection and immunity	L	т	Р	с					
Year	ll year	Semester	IV sem	3	1	0	4					
Pre-Requisite	10+2	Co-requisite										
Course Objectives	The objective	he objective of this course is to develop an understanding of the basics of infection and immunity										

	Course Outcomes
CO1	To understand basic details of infectious diseases and its transmission
CO2	To understand basic details of Laboratory Diagnosis of Infectious Agents
CO3	To understand basic details of antigens, immune system organization and types of immunity
CO4	To understand basic details of Structure and functions of MHC molecules and complement activation
CO5	To understand basic details of Immunological techniques, Immune response and Vaccin ation

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	History and transmission of infectious diseases	Definition and Historical perspectives of infectious diseases, Modes of Transmission and Pathogenesis of Infectious Diseases: Adherence and invasion mechanisms, toxigenesis and virulence factors, Host-pathogen interactions	8	C01
2	Laboratory Diagnosis of Infectious Agents	Laboratory Diagnosis of Infectious Agents: Sample collection and handling, Microscopic examination and staining techniques, Culture, biochemical tests, and serological assays; Infection Control Measures: Standard precautions and isolation techniques, Sterilization, disinfection, and decontamination, Surveillance and outbreak investigation	8	CO2
3	Immune system organization	History of Immune system, Types of immunity Humoral & Cell Mediated. The cells and organs of the immune system. Innate immunity. Anatomical barriers, cell types of innate immunity, connection between innate and adaptive immunity	8	CO3
4	Types of Immunity and antigenic determinants	Adaptive immunity: Antigens and haptens. Structure and distribution of classes and substances of immunoglobulins (Ig), Ig fold, effector functions of antibody, antigenic determinants on Ig and Ig super family. Generation of antibody diversity	8	CO3
5	Structure and functions of MHC molecules	Structure and functions of MHC molecules (MHC I and II), Endogenous and exogenous pathways of antigen processing and presentation	6	CO4
6	Complement and its activation	Complement and its activation by classical, alternate and lectin pathway; biological consequences of complement activation; regulation of complement activity	6	CO4
7	Immunological techniques	Immunological methods-Antigen-antibody interactions. Agglutination, hemagglutination. Precipitin reactions in solution and in gels; immunoassays. Selection, Antigen presentation, Activation of T and B cells. Cytokines	8	CO5
8	Immune response and Vaccination	Immunological tolerance-Primary and secondary. Hypersensitivity and its types. Immune response against major classes of pathogens. Vaccines: Live attenuated, Inactivated, Toxoid, subunit/conjugate vaccine. Monoclonial Antibody	8	CO5
Referenc	e Books:			
"Murray'	s Medical Microbiology" by	y Patrick R. Murray, Ken S. Rosenthal, Michael A. Pfaller		
	<i>a, ,</i>	eenwood, Richard C. B. Slack, Michael R. Barer, Will L. Irving		
,	01 1 1	Jenni Punt, Sharon Stranford		
"Basic Im	munology: Functions and I	Disorders of the Immune System" by Abul K. Abbas, Andrew H. Lichtman		
e-Learr	ning Source:			

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4		
CO	POI	P02	P03	P04	P05	PU6	P07	P301	P302	P303	P304		
CO1	3	1	1				1	3		1	3		
CO2	3	1					1	2		2	3		
CO3	3	1		3			1	3		3	2		
CO4	3	1					1	2		3	2		
CO5	3	1					1	3		3	2		
			1- Low (Correlation: 2-	Moderate Cor	relation: 3- Sub	stantial Correlat	tion					

Effective from Session: 2023	Effective from Session: 2023-24									
Course Code	B100404P/	Immunological	Immunological Techniques Lab		т	Р	C			
course code	BS258	Techniques Lab		-	•	F				
Year	П	Semester	nester IV							
Pre-Reguisite	10+2	Co-requisite								
Ple-Requisite	Biology	co-requisite								
	The objective	e of this course is to en	nable students learn about basics of immunology, types of	of Bloo	od grou	ping,	cell			
Course Objectives	counts, ELISA, Ouchterlony Double diffusion (ODD) and Separation of serum from blood & precipitation of									
	Immunoglobulins									

	Course Outcomes						
CO1	Analyze Blood grouping						
CO2	Perform and analyze differential counting of WBC and detergent lysis of RBC						
CO3	Perform and analyze Dot Elisa, ELISA						
CO4	Have knowledge of and can perform Ouchterlony Double diffusion assay						
CO5	Perform and analyze separation of serum from blood & precipitation of Immunoglobulin						

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Exp. 1	Blood grouping	6	CO1
2	Exp. 2	Differential Count of WBC	6	CO1
3	Exp. 3	Detergent lysis of RBC	6	CO2
4	Exp. 4	Dot Elisa	6	CO3
5	Exp. 5	ELISA – Demonstration	6	CO3
6	Exp. 6	Ouchterlony Double diffusion (ODD)	6	CO4
7	Exp. 7	Separation of serum from blood & precipitation of Immunoglobulins	6	CO5
Refere	nce Books:	•	•	
1. Asim	Roy Kumar, 2. Talwar Gu	pta A Handbook of Practical & Clinical Immunology 3. A.K. Abbas and A.H. Lichtman, Sa	aunders, Basic	Immunology,

1. Asim Roy Kumar, 2. Talwar Gupta A Handbook of Practical & Clinical Immunology 3. A.K. Abbas and A.H. Lichtman, Saunders, Basic Immunology, W.B. Company

e-Learning Source:

PO-PSO	DO1	000	002	PO4	DOF	пос	007		DCO0		
СО	PO1	PO2	PO3	P04	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO1	3	1		3			2	3	2		
CO2	3	1		3			2	3	2		
CO3	3	1		3			2	3	2		
CO4	3	1					2	3	2		
CO5	3	1					2	3	2		

Name & Sign of Program Coordinator	Sign & Seal of HOD

Effective from Session: 2023-24											
Course Code	B110405V/ BS259	Title of the Molecular Medicine		L	т	Р	с				
Year	П	Semester	IV		0	0	3				
Pre-Requisite	10+2	Co-requisite									
Course Objectives	Course Objectives The objective of this course is to develop an understanding of principle and application of the molecular medicine.										

	Course Outcomes							
CO1	To understand basic knowledge of working, design, and requirements a molecular medicine lab set up along with sample handling and preparation in lab.							
CO2	To understand basic understanding of conformations of Biomolecules and diseases related to protein mis- folding.							
CO3	To understand basic details the principle and methodology employed for the studying tissue and cell structure, and different preparative procedures for light and electron microscopic visualization							
CO4	To understand basic details about the principle and technical aspects of animal cell culture.							
CO5	To understand basic details about principle and application of several molecular techniques employed in diagnosis of diseases.							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Molecular Medicine Lab	Molecular Laboratory Set up: Introduction, Design, Requirements, Laboratory, Good Clinical Laboratory Practice (GCLP), buffer preparation, micro-pipetting, Measurement of pH of solutions, molarity, normality and molality calculation and graph plot, sample collection, handling and storage etc. used in laboratory.	8	C01
2	Biomolecule Conformations & related disorders	Conformation of Biomolecules: Nucleic acids: A-, B-, Z-DNA forms. Ramachandran plot, Secondary, Tertiary and Quaternary structure, Domains, Motif and Folds. Protein misfolding: diseases and diagnosis	8	CO2
3	Cell Imaging and Interpretation	Principles and constituents of compound, fluorescence, phase contrast, differential interference contrast and dark field microscopy, Preparation of cells and tissues for light and electron microscopy.	8	CO3
4	Animal Cell Culture	Description and maintenance of animal cell culture, aseptic technique, cloning and selection of specific cell types, contamination, methods for measuring viability and cytotoxicity, cell culture environment (substrate, gas phase, medium) and the culturing of specific cell types	8	CO4
5	Molecular Diagnostics Techniques	Role of PCR & its variants in diseases diagnosis, Nucleic acid Extraction Protocol (DNA & RNA), Polymorphism based disease diagnostics techniques such as RFLP and RAPD.	6	CO5
Referen	ce Books:			
" Berg, J	.M., Tymoczko, J.L. and Stry	er, L. (2010). Biochemistry. W.H. Freeman & Company. USA.		
"Medica	l Microbiology" by David Gr	eenwood, Richard C. B. Slack, Michael R. Barer, Will L. Irving		
"Kuby In	nmunology" by Judy Owen,	Jenni Punt, Sharon Stranford		
"Basic In	nmunology: Functions and I	Disorders of the Immune System" by Abul K. Abbas, Andrew H. Lichtman		

Basic Immunology: Functions and Disorders of the Immune System" by Abul K. Abbas, Andrew H. Lichtman

e-Learning Source:

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO-											
PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
со											
CO1	3	1	1				1	3		1	3
CO2	3	1					1	2		2	3
CO3	3	1		3			1	3		3	2
CO4	3	1					1	2		3	2
CO5	3	1					1	3		3	2